

Introduction

● Create programmable clock from Nixie tube calculator
– Reverse engineer display interface using oscilloscope

● No schematics and no datasheets available whatsoever
● Figure out correct interface points on PCB (cut traces)
● Interface Raspberry Pi to vintage high voltage electronics
● Write C code to emulate display protocol in software

– Runs UDP server thread to handle remote requests via wifi

– Remote control from Android phone over wifi
● Write Java Android app to control rPi C code

– UDP client; simple ASCII protocol

● Support switching between multiple date/time display formats
● Support setting individual digits via wheel controls

● Created by: Eric D. Cohen <nixie@epieye.com>, 2016

mailto:nixie@epieye.com

Hardware

Modified

rPi Delidded Macally
USB PSU (HOME10U)

USB
wifi

rPi
GPIO

4504 level translaters
(GPIO data IO)

Keypad
Interface

Display IF
(cut traces)

+15V

Singer-Friden-Hitachi EC1117

● Founded by Carl Friden in San Leandro, CA, 1934
– R&D center in Oakland, CA

– Initial products were typewriters and mechanical calculators

– Bought by Singer (Sewing Machines!) in 1965

● EC1117 released in 1971
– First to use LSI ICs

– Retail price of $445 ($2,900 today)

– 12 digits in Hitachi CD-90 Nixie tubes (14 digits for EC1118)
● EC1117A→cost reduced version using early VFD tubes

– Fixed point with interesting additional arithmetic features

– Extremely robust magnetic reed switch keypad

Nixie Tubes

● Haydu/Borroughs circa 1955
– Numeric Indicator eXperimental

Number 1 (NIX 1→Nixie)

● Cold cathode
– No filament like traditional tube

– Each digit a cathode

● Operates around 200V@2mA
– Switching circuit grounds

desired cathode (digit)

– Off digits float (avoid leakage)

Raspberry Pi 2B (a21041)

● Cheap: $35
● Powerful: quad core 900MHz Cortex-A7

– 1GB RAM

● Runs reasonably cool without heatsink
● Many configurable GPIO pins
● Mature Linux distros
● Compact enough

Packaging (rPi Board Rework)

● Limited headroom in chassis
– Desolder both dual USB ports

● Replace with single USB port for wifi

– Desolder Ethernet RJ45 port

– Desolder all GPIO headers
● Directly solder ribbon cables for GPIO

● Attach directly to calculator PCB
with foam mounting tape

Notional Schematic

Raspberry Pi Model B+ V1.2
(C)Raspberry Pi 2014

Ethernet
RJ45

2x USB 2.0

HDMI

Micro

USB
Power in

CPU/GPU
Broadcom
BCM2835
512MB SDRAM

Ethernet
controller

LAN9514

4x USB +

2x USB 2.0

Ethernet

40pins: 28x GPIO, I2C, SPI, UART

Regulator polarity protection

current
3.3V
&

1.8V

1

4 poles

HDMI out

jack

limiter

power
good

 1 3 5 7 9 11 14 8

16 2 4 6 10 12 15 13

4504 Level Shifter

V
cc

A
in

B
in

C
in

D
in

E
in

F
in

V
ss

V
d

d

A
o

u
t

B
o

u
t

C
o

u
t

D
o

u
t

E
o

u
t

F
o

u
t

M
o

d
e

 1 3 5 7 9 11 14 8

16 2 4 6 10 12 15 13

4504 Level Shifter
V

cc

A
in

B
in

C
in

D
in

E
in

F
in

V
ss

V
d

d

A
o

u
t

B
o

u
t

C
o

u
t

D
o

u
t

E
o

u
t

F
o

u
t

M
o

d
eB

C
D

 G
P

IO

4

3.
3V

Serial BCD GPIO Output (15V)
4

+15V

C
lock (1 5V

)

Clock Input (3.3V)

Display Bus

● 4 bit serial BCD
– 12 digits across 4 lines time multiplexed

● Active low
– 15 volt logic

● Use 4504 level shifters for for 3V conversion

● 60uS bit time
– 16.7 kb/s data rate per line (66.7 kb/s total)

● 860Hz system clock (how quaint!!!)
– 1,163uS system clock period

● 115uS high preamble
● Seems to have optional stop bit

Cut 4 traces

15V Display Input
(to 4504 output
via wirewrap)

Calculator
bit0 probe

4504 SOIC
breakout PCB

3V GPIO
(rPi to 4504)

Software

Raspberry Pi C Code

● rPi runs Linux/Raspbian
– C code runs as standard user process; no RTOS

● Sometimes misses RT deadline; probably scheduler IRQ
● Depends on WiringPi for GPIO support
● Poll GPIO in tight loop for system clock rising edge

– Wait 115uS after rising edge
– Drive all 4 data lines for the first digit; hold (spin) for 60uS
– Drive all 4 data lines for the second digit; hold for 60uS
– Repeat until all 12 digits have been driven 60uS each
– Poll for next rising edge; repeat from top

● Always poll/spin: any context switch→missed deadlines
● Open loop within system clock period→jitter

– 19 bittimes within each system clock cycle

– Listen for UDP packet for mode change, digit program
● Lockless to avoid timing issues

Android App

Swipe right→next mode
Swipe left→previous mode

Main Activity Configuration Activity

Real-time individual
digit control

Android App

● My very first Android app
– Depends on android-wheel library

– Back panel nameplate image controls mode
● Swipe right or left for next or previous mode
● Date/time formats, counter mode, digit control mode, etc

– Emits 14-byte ASCII control message for UDP send
● ASCII message Format: <op>,<12 digits>
● Digits may be ignored depending on op, but must be sent
● Ops: 0→next mode, 1→previous mode, 2→digit control

Waveform Walkthrough

Waveform Walkthrough

● Oscilloscope captures show only bit zero
– Remaining three bits have same protocol

– Digit formed by simultaneously sampling all four bits
at given time offset

– Digit n center time offset (uS): T(n) = 60n + 145

● Yellow trace: 860Hz system clock
● Blue trace: calculator (native) generated bit zero
● Purple trace: emulated (rPi) bit zero

860Hz Clock

860Hz system clock

Pre-Clear

Native display signal
bit 0

Post-Clear

Stop bit

Display 000000000001

Bit 0, first time slot
active low

Display 000000000001 Zoom

Bit 0, first time slot
active low

Display 000000000001 Preamble

115uS high preamble

Display 101010101010

Bit 0, first time slot
active low (1)

Bit 0, second time slot
high (0)

Bit 0, third time slot
active low (1)

Bit 0, last time slot
active low (1)

101010101010 Emulation Output

Purple trace is
emulated bit

101010101010 Emulation Zoom

Substantial difference
in fall time

Error in emulation
duty cycle

101010101010 Emulation Bit Time

101010101010 Emulation Falltime

Emulation shows much faster
falltime so approximate middle

of switching threshold

101010101010 Emulation Error

Low for 8.8uS too long;
Fix by varying duty cycle

AKA: Don't let perfection be
the enemy of good enough

Future Work

● Run under RTOS (Xenomai, PremptRT, etc)
● Figure out how decimal point works

– Use as column seperator

● Find bittime clock or do active clock recovery
● Pass-through mode for original calculator logic
● Use as media center
● Support other vintage calculators

Credits

● Nixie images from wikipedia under CC license
– https://en.wikipedia.org/wiki/Nixie_tube

● Nixie diagram from Radio Electronics (RIP)
– http://www.decodesystems.com/re-how-nixies-work.ht

ml
● App icon CC license from Virginio Savani

– https://commons.wikimedia.org/wiki/File:Nixie_IN17.s
vg

● EC1117 background from Rick Bensene
– http://www.oldcalculatormuseum.com/friden1117.html

https://en.wikipedia.org/wiki/Nixie_tube
http://www.decodesystems.com/re-how-nixies-work.html
http://www.decodesystems.com/re-how-nixies-work.html
https://commons.wikimedia.org/wiki/File:Nixie_IN17.svg
https://commons.wikimedia.org/wiki/File:Nixie_IN17.svg
http://www.oldcalculatormuseum.com/friden1117.html

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

